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Womack, PLoS One (2015)



Table 4. Physics top 10 journals by Impact Factor, 2013.

rank Journal Total Cites Impact Factor 5-year Impact Factor
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7 MNano Today 3,855 18.432 19.202
8 Living Reviews in Relativity 1,600 16.526 18.310
8 Advances in Optics and Photonics 660 9.688 18.194
10 Reports on Progress in Physics 11,421 15.633 16.627

doi:10.1371/joumnal.pone.0143460.1004

Womack RP (2015) Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics. PLOS ONE 10(12): e0143460.

https://doi.org/10.1371/journal.pone.0143460
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 With a small citation budget you need to give
high quality, balanced and scholarly references

* RMP articles are inevitably the iconic citations
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It’s not just the sustained high level
of erudition, comprehensive scope,
clarity and breadth of topics ...
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I’ve ever encountered in RMP
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An introductory review of the central ideas in the modern theory of dynamic critical phenomena is
followed by a more detailed account of recent developments in the field. The concepts of the conventional

theory, e I scaling, uni lity, and the renor group are introduced and are
illustrated in the context of a simple le—the phase of a sy binary fluid. The

renormalization group is then developed in some detail, and applied to a varicty of systems. The main

Vorume 15, Numser 1 January, 1943

dynamic universality classes are identified and chmclcri.md. It is found that the mode-coupling and
renormalization group theories fully explain | data at the critical point of pure
fluids, and binary mixtures, and at many magnetic phase lnnsmovu. but that a number of discrepancies

Stochastic Problems in Physics and®Astronomy

exist with data at the superfluid transition of ‘He.
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INTRODUCTION

NTIL a few years ago it had been impossible to construct a theory of

radiation which could account satisfactorily both for interference phe-
nomena and the phenomena of emission and absorption of light by matter.
The first set of phenomena was interpreted by the wave theory, and the sec-
ond set by the theory of light quanta. It was not until in 1927 that Dirac
succeeded in constructing a quantum theory of radiation which could explain
in an unified way both types of phenomena. In this article we shall develop
the general formulas of Dirac’s theory, and show its applications to several
characteristic examples (Part I). In the second part of this work Dirac’s rela-
tivistic wave equation of the electron will be discussed in relation to the
theory of radiation. The third part will be devoted to the problems of the
general quantum electrodynamics, and to the difficulties connected with it.

* Lectures delivered at the Symposium for Theoretical Physics during the Summer Session
of 1930 at the University of Michigan.
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Space-Time Approach to Non-Relativistic
Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(¢) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of %)
for the path in question. The total contribution from all paths reaching x, ¢ from the past is the
wave function y(x, ¢). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

1. INTRODUCTION

T is a curious historical fact that modern
quantum mechanics began with two quite
different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-

" matically equivalent. These two points of view

were destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory.

This paper will describe what is essentially a
third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac’s"? remarks concerning the relation of

1P. A. M. Dirac, The Principles of Quantum Mechanics
The Clarendon Press, Oxford, 1935), second edition,
tion 33; also, Physik. Zeits. Sowjetunion 3, 64 (1933).
2 P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).

classical action® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and B interact, the coordinates of one of the
systems, say B, may be eliminated from the
equations describing the motion of 4. The inter-

3 Throughout this paper the term ‘“‘action’ will be used
for the time integral of the Lagrangian along a path.
When this path is the one actually taken by a particle,
moving classically, the integral should more properly be
called Hamilton’s first principle function.
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Chapter IV

The ideas developed in this chapter are in the main taken
from

65. S. Chandrasekhar, Astrophys. J. 94, 511 (1941).

66. S. Chandrasekhar and J. von Neumann, Astrophys.

J. 95, 489 (1942).
67. S. Chandrasekhar and J. von Neumann, Astrophys.
J. 97, 1, (1943)

68 5 Chandrasekhar, Prmczples of Stellar Dynamics
(University of Chicago Press, 1942), Chapters II and V.

§2.—The problem considered in this section is clearly
equivalent to finding the probability of a given electric
field strength at a point in a gas composed of simple ions.
This latter problem was first considered by Holtsmark:

69. J. Holtsmark, Ann. d. Physik 58, 577 (1919); also
Physik. Zeits. 20, 162 (1919) and 25, 73 (1924). Among
other papers on related subjects we may refer to

70. R. Gans, Ann. d. Physik 66, 396 (1921).

71. P. Hertz, Math. Ann. 67, 387 (1909).

72. R. Gans, Physnk Zelts 23, 109 (1922)

§3.—See references 66 and 67. See also three further
papers on ‘‘Dynamical Friction” by Chandrasekhar in
forthcoming issues of The Astrophysical Journal where

further applications of the Fokker-Planck equation will be
found.
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ies and pattern formation in crystal growth*

J. S. Langer

Physics Department and Center for the Joining of Materials, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213

Several common modes of crystal growth provide particularly simple and clegant examples of
pattern ion in nature. P of interest here are those in which an advancing
nonfaceted solidification front suffers an i and izes itself into a more
complex mode of behavior. The purpose of this essay is to examine several such situations and, in doing
this, to identify a few new theoretical ideas-and a larger number of outstanding problems. The systems
studied are those in which solidification is controlled entirely by a single diffusion pracess, either the flow
of latent heat away from a moving interface or the analogous redistribution of chemical constituents.
Convective effects are xgnoud as are most effects of crystalline anisotropy. The linear theory of the
Mullins-Sekerka |ns|nh|hty is reviewed for simple planar and spherical cases and also for a special model
of directi These techni are then extended to the case of a freely growing dendrite,
and it |s shown how this nnalyus leads to an understanding of sidebranching and tip-splitting instabilities.
1-stability is i and it is argued that this intrinsically nonlinear theory, if
valid, permits aone to use results of linear-stability am!ysls to prednc( dendnuc growth rates. The review
with a di of nonli effects in The cellular
interfaces which emerge in this situation have much in common with convection patterns in
hydrodynamics. The cellular stability problem is dlscnssed briefly, and some preliminary attempts to do
in the strongly 1i regime are
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I. INTRODUCTION

Qutside the realm of biology, some of the most beau-
tiful and familiar examples of spontaneous pattern
formation in nature can be found in the growth of cry-
stals, We all have admired snowflakes; and most
physicists are aware of the dendritic—that is, tree-
like-—microstructures which occur during the solidifi-
cation of alloys. Solidifying systems are extremely
interesting for scientific and technological as well as
aesthetic reasons. Compared to complex biological
processes, these systems represent conceptually sim-
ple of self-c i ; but we shall see
that, even here, the underlying mechanisms are not well
understood.

‘Traditional studies of crystal growth, especially
among physicists, have focused primarily on symme-

*Research supported in part by AFOSR Grant F44620~76—-C—0103.

Reviews of Modern Physics, Vol. 62, No. 1, January 1980

https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?first_nm=James&Ilast_nm=Langer&year=1997

tries of atomic arrangements, surface anigotropies,
and, more generally, on those near-equilibrium pro-
perties which are dominated by atomic and crystallo-
graphic effects. The formation of complex solidifica-
tion patterns, however, is an intrinsically nonequili-
brium phenomenon which has been studied, out of neces-
sity, mostly by metallurgists who must deal in a very
practical way with these phenomena in the design of
materials processes.! In this essay, I shall present a
physicist’s interpretation of some of the previous work
on the nonequilibrium problem, and shall supplement
this review with a more speculative discussion of re-
cent developments. I shall try to describe the problem
in such a way as to emphasize its relationship to a num-
ber of apparently similar self-organizing systems that
have b fashionable among physi chemists,
biologists, and mathematicians.

As prelude to a more detailed presentation of special
solidification problems, it will be useful to think a bit
about the snowflake. Real snowflakes—those that fall
from real clouds—are formed by more complicated
processes than those which we shall consider here;
but they provide a good starting point for posing ques-
tions. A typical snowflake, traced from a photograph
by Nakaya (1954), is shown in Fig. 1. The pattern is
planar and has the hexagonal symmetry characteristic
of ice crystals, The snowflake has grown out from a
central nucleus; and growth has occurred in anumber of
stages, each stage being governed by the external condi-
tions encountered by the developing crystal as it is
carried through different regions of the atmosphere.
The six main dendritic branches of the crystal are
essentially, but not precisely, identical to one another.

11 shall make no attempt here to provide a complete review
of the metallurgical literature. A good starting point for such
a survey is the book Crystal Growth, edited by B. R. Pamplin.
In particular, see the articles on interfacial stability by Delves
(1975) and dendrites by Doherty (1875). A more basic
reference is Chalmers (1964).

Copyright © 1980 American Physical Society 1
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The purpose of this essay is to examine several such situations and, in doing
this, to identify a few new theoretical ideas and a larger number of outstanding problems. The systems
studied are those in which solidification is controlled entirely by a single diffusion process, either the flow
of latent heat away from a moving interface or the analogous redistribution of chemical constituents.
Convective effects are ignored, as are most effects of crystalline anisotropy. The linear theory of the
Mullins-Sekerka instability is reviewed for simple planar and spherical cases and also for a special model
of directional solidification. These techniques are then extended to the case of a freely growing dendrite,
and it is shown how this analysis leads to an understanding of sidebranching and tip-splitting instabilities.
A marginal-stability hypothesis is introduced; and it is argued that this intrinsically nonlinear theory, if
valid, permits aone to use results of linear-stability analysis to predict dendritic growth rates. The review
concludes with a discussion of nonlinear effects in directional solidication. The nonplanar, cellular
interfaces which emerge in this situation have much in common with convection patterns in
hydrodynamics. The cellular stability problem is discussed briefly, and some preliminary attempts to do
calculations in the strongly nonlinear regime are summarized.

e “QOutside the realm of biology, some of the most beautiful and
familiar examples of spontaneous pattern formation in Nature
can be found in the growth of crystals. Compared to complex
biological processes, these systems represent conceptually simple
examples of self-organization; but we shall see that, even here,
the underlying mechanisms are not well understood.” 41
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FIG. 12. Multiple-exposure photograph of a downward-grow=-
ing succinonitrile dendrite (Glicksman, to be published).

Langer (1980)
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Surprisingly, Fujioka’s data for growth rates of ice
dendrites also fit nicely on the V(a) curve in Fig. 15,
For ice, g is roughly 4; and the twofold, rather than
fourfold, symmetry about the growth axis would seem
0 require j=3 in . The resulting value of o*
=0, 025 seems exactly right; but, in view of the major
uncertainties in the theory, I think that this precise
agreement must be largely fortuitous., It seems to me
that the present form of the theory cannot be adequate
to describe so highly anisotropic a system, and that,
in particular, anisotropic attachment kinetics must be
included in both the steady-state calculation and the

stability analysis.

experimental results, the stability theory of dendritic
growth is fundamentally incomplete, The stable oper-
ating point of a dendrite seems tobe a complex, dynamic,
essentially nonlinear state of the system; and I must
emphasize that we do not understand this state at all
yet. We have no satisfactory model of the mechanism
by which the tip instabilitly at o <0* restores v to the
neighborhood of o* without destroying the dendritic
structure. Presumably, there exists some higher-

Langer (1980)

44



 These are questions
(1)-(3) of a long list of
(11) problems.

* |n the face of an
apparently successful
theoretical start,
Langer was so
dissatisfied with the
basis of the work that
he outlined a
research program
that would take
another 20 years to
begin to come to
fruition!

Let us start with questions pertaining to dendrites.
The sidebranching mechanism and the marginal -
stability hypothesis have provided us with a new starting
point for both theoretical and experimental investi-
gation. However:

(1) We have no firm theoretical basis for the mar-
einal -stability hypothesis. Is it correct? If so, what
actually happens in the nonlinear operating mode of the
dendrite? Does the system undergo a limit cyele?
What role is played by thermal {luctuations?

(2) We have no reliable and systematic means for
evaluating the stability parameter o*. Part of the prob-
lem is in the numerical analysis. How does one ob-
tain accurate solutions to a non-Hermitean stability
problem, Eq. (4.24), for a semi-infinite system
(0= £ <e¢) in which the most interesting deformations —
the sidebranches —grow without bound at large £7 Does
the spherical approximation have any validity? How
important are capillary corrections to the steadv-state
solution?

These are the most basic and immediate theoretical
problems. Questions of more practical interest in-
clude:

(3) What is the effect of crystalline anistropy? How
does one include anisotropic attachment kineties in the

steady-state problem or in the stability analysis? Can
one construct a guantitative theory for a strongly anis-
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* Jim Langer: “Interesting! | had forgotten
about that paper. Much of it was wrong, as |
guessed in the conclusion. The theory was
done correctly with your help in the next five
years or so, which must be your main point.”

e “Of course you can quote me. As you know,

I've always insisted that it’s important to make
mistakes.”
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Static Phenomena Near Critical Points:
Theory and Experiment
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This paper compares theory and experiment for behavior very near critical points. The primary experimental results
are the “critical indices” which describe singularities in various thermodynamic derivatives and correlation functions.
These indices are tabulated and compared with theory. The basic theoretical ideas are introduced via the molecular
field approach, which brings in the concept of an order parameter and suggests that there are close relations among dif-
ferent phase transition problems. Although this theory is qualitatively correct it is quantitatively wrong, it predicts the
wrong values of the critical indices. Another theoretical approach, the “scaling law” concept, which predicts relations
among these indices, is described. The experimental evidence for and against the scaling laws is assessed. It is suggested
that the scaling laws provide & promising approach to understanding phenomena near the critical point, but that they

are by no means proved or disproved by the existing experimental data.
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I. INTRODUCTION

In recent years, considerable attention has been
drawn to the phenomena which occur very near
critical points. Several recent conferences!? have
presented a wealth of new experimental data and
theoretical ideas in this area. These conferences have

broadcast the fact that there are quite marked simi-
larities between apparently very different phase
transitions. An antiferromagnet near its Néel point
behaves quite similarly to a liquid near its critical point.,
The superconducting transition is not very different
from several ferroelectric transitions. In all cases, there
is an apparently rather simple behavior in the region
right around the critical point.

This simplicity and similarity among phase transi-
tions is not fully elucidated theoretically. Some of the
qualitative features of this behavior are reasonably
well understood; others remain a complete mystery.

In this paper we review the present status of theory
and experiment in this area, concentrating on the
time-independent properties of systems near T.. Thus,
we look at thermodynamic derivatives and time-
independent correlations but ignore the very interesting
work on transport coefficients and time-dependent
correlations. The particular subject is what can be
learned by comparing different phase transitions with
each other and with the existing theories. How are
different phase transitions alike? In what ways do they
differ? Why should we expect these similarities and
differences?

Because we are considering such a broad range of
phenomena, we cannot expect our readers to be experts
in any particular area we describe. Consequently, we
attempt to provide explanations and discussions which
will be comprehensible to the nonexpert. We are
hopeful that our treatment will provide some picture
of the interrelations within this broad field.

In the next section, the important theoretical ideas—
the order parameter, the choice- between different
phases, long-range correlations, and fluctuations—are
introduced via the molecular field approximation.
These results are tested by comparing them with

395
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SCALING LAWS FOR ISING MODELS NEAR T _*

LEO P. KADANOFF @

Department of Physics, University of Illinois
Urbana, Illinois

(Received 3 February 1966)

Abstract

A model for describing the behavior of Ising models very near T, is introduced.
The description is based upon dividing the Ising model into cells which are micro-
scopically large but much smaller than the coherence length and then using the
total magnetization within each cell as a collective variable. The resulting calcu-

lation serves as a partial justification for Widom’s conjecture about the homogene-
ity of the free energy and at the same time gives his result sv’' =y’ + 2B,
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Next, consider the interaction among cells. The free energy will tend to be larger if the
spins on neighboring cells are lined up. There will tend to be a smaller contribution if they
are anti-parallel. Then, in net, this tends to make a contribution to the exponential exp[-—EWﬂ

exp E {uaup I?(e, LY + f:. 08, L) ] g (7)
a, B

Here the sum extends over nearest neighbor cells, K + f; ., gives the contribution to the free

energy when neighboring cells are aligned and, — K + f, . gives the contribution to the free
energy when they are out of step. Sipce the direct interactions between cells which produce
fine Occur within a distance which is very short compared to the coherence length, we assume
that f, ., is, like fy(e), a regular function of &, but not necessarily a regular function of |

On the other hand, K is perhaps a somewhat more subtle beast. This describes the extra free
energy that it costs to put two cells out of step. This involves, then, the rather delicate
difference between the ways cells can match up when they are in step and when they are out of

step. Nonetheless, it seems reasonable to assume that K(e, L) is also a regular function of g;
but, we assert this with somewhat less confidence than our other statements relating to this
model. In writing (7) we are asserting that the correlations among cells can be totally repre-
sented by these interactions among near neighbors and that there are no less direct interactions
that we need include in (7) as long ranged interactions. This statement, together with the
assertion that the cell can be represented by the double valued variable, Mg, are the two basic
assumptions of this model.
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wrong values of the critical indices. Another theoretical approach, the “scaling law’” concept, which predicts relations
among these indices, is described. The experimental evidence for and against the scaling laws is assessed. It is suggested
that the scaling laws provide a promising approach to understanding phenomena near the critical point, but that they
are by no means proved or disproved by the existing experimental data.

* Significance of this early paper: first detailed
confrontation of scaling theory with experiment
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TasLE IX. Specific heat.»

e=| AT |/T. , i
Material Experimenters Ref. T (°K) Range for fit o o /A Comments
Antiferromagnets
MnF, Teaney 86 67.3320.01 2 104-5X 1072 <0.16 <0.18 .0
. i 2.28940.002 107%-3X102 <0.11
CoCl+6 H:O Skalyo, Friedberg 84 Ul A <0.19 0 Rounding of pesk
i . 005 1031071 <0.14 T>T,, Logarithm fits data for
MnCl:-4 H.O Friedberg, Wasscher 89 1.622-+0.00 ~ ?0'“—2)(10‘1
CuK:(504)2+6 H:O . . 0.19340.001  1073-2X107* <0,
i . Wieli Huisk 85
CoCs:Cly Micdema, Wielinga, Hulskamp 0.520.01  4X107-2x107  <0. _
4X1073-5107* <0.25 Rounding of peak
i f 0.83+0.01 2X 105X 102 <0.15 .
RoMnTs Teaney, Moruazl, Argyle % 2X1073-2XX 1072 <0.15 ..0 Rounding of peak
Ferromagnets
) i 91 1043.0+1.0 2X10-%-107 <0.17
i[ron Kraftmakhér, Romashina 2oty P <0.13 o
LJCuK:CL-Z H:0 Miedema, Wielinga, Huiskamp 92 0.88+0.01 10-3-101 <0.10 <0.17 L.0
3 Data have considerable scatter.
Nickel Kraftmakher 93 627.0 5X102-8X 10 N e it A4 1 pro-
vide reasonable fit.
1 <
Value used for scaling law analysis <0.16 <0.16
Molecular field theory 0 0 Finite discontinuity
<
3-dimensional Ising model 0.2

<0.1

& Further information on magnetic specific heats may be found in Ref. 1, particularly the papers of Teaney and Yamamoto ef al,

The correct value for the specific heat exponent is about 0.11, but these measurements
are difficult to do, require background subtractions, hard to get enough decades of

scaling, and the critical temperature is a fitting parameter that can readily change the
deduced exponents
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TaBLE XIV. Summary table for 8.

Fluid B Reference Range of e
Xe 0.3504-0.015 99 4 X103 —e<4 X103
Ar 0.4+0.2 103 6X10° < —e<8 X108
Ar 0.33+0.05 103 8X103< —e<10?
COq 0.344+0.01 105 4 X108 —e<101
“Best value” 0.3460.01
Lattice gas 0.313+0.004 Table III

Universality
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TABLE XX. Comparison with scaling laws. According to the
analysis of Sec. III all of these numbers should be equal. The
numbers used here are the “best values” of Tables XIV-XIX.

2—a 2—o/  y+28 428 G+  fu
1.8 1.88  2.06 1.7  1.87 1.9
+0.2  +£0.12 0.2  £0.3 =+0.14  =0.03

[ Scaling laws ]
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F1c. 4. Magnetization vs field for CrO,;. In our notation,
o=M, o'~e, H'[¢'~er=f01) Points for different e fall on the
same curve, which verifies the scaling law prediction, Eq. (4.1).
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same curve, which verifies the scaling law prediction, Eq. (4.1).



Kouvel® has used M vs H and T data to construct
a very direct check of the scaling laws. According to
Eq. (3.7), for a given material the magnetization obeys
the relation

M/é={(H/&), (4.1)

where f(H /%) is an unknown function. From (4.1) we
conclude that if we knew M as a function of H for
one value of e and if we knew 8 then we could predict
M vs H for any other value of e. [Actually this is not

These are some of the earliest tests of data collapse or Widom scaling



Static Critical Phenomena

Leo Kadanoff: “The materials research lab had just been set up at
Urbana, and my colleagues in the lab kindly, or maybe occasionally
not-so-kindly, allowed me to commandeer their graduate students
and post-docs, to give lectures in the seminar, and in the end to put
together a review paper. This is something we did over a course of
six or eight months. We reviewed, | believe, every experiment that
we could reasonably find involving critical phenomena. And
managed to fit them all into some picture which included this new
scaling point of view, based, of course, on the phenomenology that
had been developed by Widom. Based upon the phenomenology
which had also in parallel, and earlier than my work, | believe, been
developed by Patashinski and Pokrovsky. You guys could check the
stuff, but although | was probably unaware of the work, the work, |
believe, was previous to mine. And maybe even previous to
Widom's.”
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Physics of Scale Project (2004). https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/renormalization/public/index.html



Some (but not all) milestones in RG history

Ben Widom proposed Leo Kadanoff derived Ken Wilson developed ,
“data collapse” (1965) data collapse from the RG based on Kadanoff’s
scaling concepts (1966) scaling ideas (1971)
PHYSICAL REVIEW B VOLUME 4, NUMBER 9 1 NOVEMBER 1971

Renormalization Group and Critical Phenomena.
I. Renormalization Group and the Kadanoff Scaling Picture™®

Kenneth G. Wilson
Laboratory of Nuclear Studies, Covnell University, Ithaca, New Yovk 14850
(Received 2 June 1971)

The Kadanoff theory of scaling near the critical point for an Ising ferromagnet is cast in
differential form. The resulting differential equations are an example of the differential
equations of the renormalization group. It is shown that the Widom-Kadanoff scaling laws
arise naturally from these differential equations if the coefficients in the equations are ana-
lytic at the critical point. A generalization of the Kadanoff scaling picture involving an “ir-
relevant” variable is considered; in this case the scaling laws result from the renormaliza-
tion-group equations only if the solution of the equations goes asymptotically to a fixed point.



d the Kondo Problem

The renormalization group: Critical phenomena and the

* Wilson’s RMP (1975)
— Citations: 4628 (GS)

Kondo problem*f
Kenneth G. Wilson

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850

This review covers several topics involving renormalization group ideas. The
solution of the s-wave Kondo Hamiltonian, describing a single magnetic
impurity in a nonmagnetic metal, is explained in detail. See Secs. VII-IX.

“Block spin” methods, applied to the two di

1 Ising model, are

explained in Sec. VI. The first three sections give a relatively short review of
basic renormalization group ideas, mainly in the context of critical phenomena.
The relationship of the modern renormalization group to the older problems of
divergences in statistical mechanics and field theory and field theoretic

renormalization is di

d in Sec. IV. In Sec. V the special case of “marginal

variables” is discussed in detail, along with the relationship of the modern
renormalization group to its original formulation by Gell-Mann and Low and

others.
CONTENTS
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INTRODUCTION

One of the most basic themes in theoretical physics is the
idea that nature is described locally. The basic equations
of all physics are local. For example, Maxwell’s equations
specify the behavior of electric and magnetic fields in an
infinitesimal neighborhood of a point «. In order to be able
to specify local equations it is necessary to define continuum
limits, namely the limits which define derivatives. The idea
of the derivative and the idea of a continuum limit that
underlies the derivative is therefore of great importance in
all of physics.

It is now becoming clear that there is a second form of
continuum limit, called the statistical continuum limit,
which also has a very broad range of applicability through-
out physics. In the statistical continuum limit functions of a
continuous variable are themselves independent variables.
For example, the electric and magnetic fields throughout
space can be the independent variables in a statistical
continuum limit. This happens in statistical or quantum
mechanical problems where there are field fluctuations, so
that one has to compute averages over an ensemble of fields.
In statistical calculations one does not compute the field at a

* Supported in part by the National Science Foundation.
f This paper is a compilation of material presented as a series of
nine lectures at Cargese in Summer 1973.

https://www.nytimes.com/2013/06/21/science/kenneth-wilson-nobel-physicist-dies-at-77.hfieMpws of Modern Physics, Vol. 47, No. 4, October 1975

point x. Instead one computes correlation functions;
that is, expectation values of products of fields such as
(E(x,t)E(y,')). In quantum mechanical problems the corre-
lation functions are sometimes replaced by vacuum expec-
tation values of products of fields. In the simplest cases a
field average determining a correlation function can be
written formally as a functional integral. In the func-
tional integral the fields are the independent variables of
integration.

There are two ways in which a statistical continuum
limit can arise. The obvious way is when the independent
field variables are defined on a continuous space; the case
of statistical or quantum fluctuations of the electromagnetic
field is an example. If one were to replace the continuum by
a discrete lattice of points, the field averages would consist
of integrals over the value of the field E at each lattice
site n. Thus for the discrete lattice case one has a multiple
integration, JTn [dE,, the variables of integration being
the fields E,. In the continuum limit one has infinitely many
integration variables E,. Problems with infinitely many
variables can be very difficult to solve.

The second source of statistical continuum limits is the
situation where one has a lattice with a fixed lattice spacing,
usually an atomic lattice. The number of independent
variables (i.e., independent degrees of freedom) at each
lattice site is fixed and finite. The continuum limit arises
when one considers large size regions containing very many
lattice sites. When the latticeis viewed on a macroscopic
scale one normally expects the lattice structure to be
invisible. That is, large scale effects should be describable
by a continuum picture making no reference to the lattice
spacing.

Consider, for example, critical phenomena in a magnet.
A magnet is built of atoms and the atomic spacing provides
a fixed shortest length which does not go to zero. At the
critical point (the critical point occurs at the Curie tempera-
ture) there are long wavelength fluctuations of the magnet-
ization signalling the onset of spontaneous magnetization.
The maximum wavelength of the fluctuations is the corre-

Copyright @ 1975 American Physical Society 773
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What is the Kondo problem?

e Scattering of conduction band
electrons from a single
magnetic impurity
— Resistivity
— What is the resistivity as T =2 07

* The problem is that the
calculation of the upturn
leads to a divergent resistivity
at T =0.
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The state of RG c. 1975

* Wilson begins by comparing spatial derivatives
and their continuum limit with functional
Integration ...

It is now becoming clear that there is a second form of
continuum limit, called the statistical continuum limit,
which also has a very broad range of applicability through-
out physics. In the statistical continuum limit functions of a
continuous variable are themselves independent variables.
For example, the electric and magnetic fields throughout
space can be the independent variables in a statistical
continuum limit. This happens in statistical or quantum
mechanical problems where there are field fluctuations, so
that one has to compute averages over an ensemble of fields.
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The state of RG c. 1975

A procedure is now being developed to understand the
statistical continuum limit. The procedure is called the
renormalization group. It is the tool that one uses to study
lhe statlstlcal contmuum limit in the same way that the

continuum limit. However the problems that one ‘;tudlES
with the renormalization group are rarely formulated

explicitly in terms of continuum limits. Because of this
the very general nature of the renormalization group has
been less apparent than the general nature of the derivative.

The renormalization group is at a much more primitive
stage than the derivative. There is only a small subset of
problems involving the statistical continuum limit that
have been solved so far, and to solve these problems a large
amount of labor and theoretical artifice is required. One
18 still a lonoe wav from the csimnle and vet axnlicit nature
as the derivative. Nevertheless, the renormalization group
is the only method at present which is explicitly designed
to investigate statistical continuum limit problems, and is
likely to remain so. Also there are excellent prospects for
the renormalization group to become much more powerful
in the future than it is at present.
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The state of RG c. 1975

Renormalization theory, due to Bethe, Schwinger, Feyn-
man, Dyson, etc. [see Schwinger (1958)], eliminates the
divergences of quantum electrodynamics. Renormalization
theory was the first method developed for computing the
statistical continuum limit of a local theory. It continues

oday to be an importan rinvestigating the statistica
continuum ‘limit. However, the standard renormalization
theory applies only to problems which can be solved by a
Feynman diagram expansion. Even more restrictive is the

DE

portant after renormalization. (There are techniques for
summing infinite subclasses of Feynman diagrams but
unfortunately these methods are effective only in a few
cases.) The worst feature of the standard renormalization
procedure is that it is a purely mathematical technique for
subtracting out the divergent parts of integrals in the
continuum limit. It gives no insight into the physics of the
statistical continuum limit. - ' '
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RG beyond Feynman diagrams

There is an analogue to universality in the case of an
ordinary derivative. Namely, there are many different
finite difference approximations to a single derivative. That
is, many different discrete lattice differences have identical
continuum limits. Universality is the corresponding result
for the statistical continuum limit.

The fourth aspect of renormalization group theory is
the construction of nondiagrammatic renormalization group
transformations, which are then solved numerically, usually
using a digital computer. This is the most exciting aspect
of the renormalization group, the part of the theory that
makes it possible to solve problems which are unreachable
by Feynman diagrams. The Kondo problem has been solved
by a nondiagrammatic computer method. The renormal-
ization group solution of the Kondo problem is explained
in detail in this paper: see Sec. VII-IX.
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RG beyond Feynman diagrams

There is no
other review of the renormalization group solution of the
Kondo problem reported in Sec. VII-XI except an earlier
cryptic report by Wilson (1974a).

Renormalization group theory is technically more de-
manding than the theory of derivatives or Feynman
diagrams. However, most of the unsolved problems in
physics and theoretical chemistry are of the kind the
renormalization group is intended to solve (other kinds

of problems usually do not remain unsolved for long). It is
likely that there will be a vast extension of the renormal-
ization group over the next decade as the methods become
more clever and powerful ; there are very few areas in either
elementary particle physics, solid state physics, or theoretical
chemistry that are permanently immune to this infection.
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Wilson’s conception of RG

The Kondo problem is an important problem in its
own right. In addition, the solution of the Kondo problem
is the first example where the full renormalization program
(as the author conceives it) has been realized: the formal
aspects of the fixed points, eigenoperators, and scaling
laws will be blended with the practical. aspect of numerical
approximate calculations of effective interactions to give
a quantitative solution (the present accuracy is a few
percent) to a problem that previously had seemed hopeless.
The errors of the numerical calculation have been de-
termined (although not rigorously) as part of the cal-
culation and can be reduced by using more computing time.

So at present the Kondo calculation sets the standards
for what a renormalization group calculation can accomplish.
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Wilson’s conception of RG
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* We have written the equations of water flow. From experiment, we find a
set of concepts and approximations to use to discuss the solution—vortex
streets, turbulent wakes, boundary layers. When we have similar
oquati ' amiliar situati . or which w =Talale
experiment, we try to solve the equations in a primitive, halting, and
confused way to try to determine what new qualitative features may come
out, or what new qualitative forms are a consequence of the equations.
Our equations for the sun, for example, as a ball of hydrogen gas, describe

a sun without sunspots, without the rice-grain structure of the surface,
without prominences, without coronas. Yet, all of these are really in the
equations; we just haven’t found the way to get them out.

http://www.feynmanlectures.caltech.edu/ll_41.html Scientific American



Wilson’s conception of RG
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The next great era of awakening of human intellect may well produce a
method of understanding the qualitative content of equations. Today we

thlngs as the barber pole structure of turbulence that one sees between
rotating cylinders. Today we cannot see whether Schrédinger’s equation
contains frogs, musical composers, or morality—or whether it does not.
We cannot say whether something beyond it like God is needed, or not.
And so we can all hold strong opinions either way.
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Simple viscous flows: From boundary layers to the renormalization
group

John Veysey Il and Nigel Goldenfeld

Department of Physics, University of lllinois at Urbana-Champaign,
1110 W. Green Street, Urbana, lllinios 61801, USA

(Published 13 July 2007)
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Page 34 out of 68 pages of RMP

* Up to now the article is a review of sorts,
although rather idiosyncratic!

* The experience of reading it for the first time
is a rewiring of one’s world view about physics

e The restis all new calculation ...

82



RG Onions

impurity

g

shell #|

shell # 2

FIG. 13. Onion-like spherical shells giving the location of successive
wave functions in the Kondo basis. The size of the smallest (inner) shell
is a few Angstrom units.
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RG Railroad

F1liG. 14. Railroad track analogy for the
Eondo calculation, Different tracks corre-
gpond to diferent initial values of J. A
track from the top of the figure to the ath
tie corresponds to the Kondo Hamiltonian
with m electron states kept. The railroad cars
illustrate the subset of energy levels actually
kept in the numerical calculations.

P

J=0

J= (-055)

railroad cor at n=39

corresponding car
on J =0 track
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Wilson’s result

Kenneth G. Wilson: The renormalization group

836

T

T

FIG. 17.  Plot of inverse susceptibility x™'(T) va T from the computer calculations. The magnetic moment and g factor of both the impurity and
the conduction band electrons are set E‘d]_'ui.] to 1. The |:||u1. a.rtua”.y shows (kT rex)™" wva '.'I"_."'T'x, where Ty was defined in E;::|. (IX.04). The crosses
represent results for two different calculations (both with A = 2,25, but 7 = (.024 for one and 0.02412 for the other) ; the scatter at small T is due

to truncation errors, The zero temperature value is taken from Eq, (1X.69) and Table XV,
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Kondo problem was the first
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Statistical Mechanics of Cellular Automata

Statistical mechanics of cellular automata

Stephen Wolfram
The Institute for Advanced Study, Princeton, New Jersey 08540

Cellular automata are used as simple math ical models to i igate self- ization in ical
mechanics. A detailed analysis is given of “el y” cellular isting of a of sites
with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to
definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular
automata either tend to h states, or g te self-similar patterns with fractal dimensions
21.59 or ~1.69. With “random” initial confi i the ir h of the cellular automa-
ton evolution leads to several self- ion ph isti perties of the structures generat-
ed are found to lie in two universality classes, independent of the details of the initial state or the cellular

rules. More licated cellular are briefly i and ions with dynami-

cal systems theory and the formal theory of computation are discussed.

 Wolfram’s RMP (1983
— Citations: 3419 (GS)

https://www.stephenwolfram.com/scrapbook/page3/#1982_discoveries

CONTENTS dauer, 1979; Prigogine, 1980; Nicolis et al, 1981) have
often been based on the Boltzmann transport differential

L. Introduction 601 equations (e.g., Lifshitz and Pitaevskii, 1981) (or its ana-
l:i E‘;;?:i:;:;;f:g‘g?;ﬂ:::g'&u e Riomia gg,zl logs) for the time development of macroscopic quantities.
1V. Global Properties of Elementary Cellular Automata 621 The equations are obtained by averaging over an ensemble
V. Exteusions 630  of microscopic states and assuming that successive col-
VI. Discussion 639  lisions between molecules are statistically uncorrelated.
Acknowledgments 641 For closed systems (with reversible or at least unitary mi-
References 642 croscopic interactions) the equations lead to Boltzmann’s
H theorem, which implies monotonic evolution towards

(. INTRODUCTION the macroscopic state of maximum entropy. The equa-

The second law of thermodynamics implies that isolat-
ed microscopically reversible physical systems tend with
time to states of maximal entropy and maximal “disor-
der.” However, “dissipative” systems involving micro-
scopic irreversibility, or those open to interactions with
their environment, may evolve from “disordered” to more
“ordered” states. The states attained often exhibit a com-
plicated structure. Examples are outlines of snowflakes,
patterns of flow in turbulent fluids, and biological sys-
tems. The purpose of this paper is to begin the investiga-
tion of cellular automata (introduced in Sec. II) as a class
of mathematical models for such behavior. Cellular auto-
mata are sufficiently simple to allow detailed mathemati-
cal analysis, yet sufficiently complex to exhibit a wide
variety of complicated phenomena. Cellular automata are
also of sufficient generality to provide simple models for
a very wide variety of physical, chemical, biological, and
other systems. The ultimate goal is to abstract from a
study of cellular automata general features of “self-
organizing” behavior and perhaps to devise universal laws
analogous to the laws of thermodynamics. This paper
concentrates on the mathematical features of the simplest
cellular automata, leaving for future study more compli-
cated cellular automata and details of applications to
specific systems. The paper is largely intended as an origi-
nal contribution, rather than a review. It is presented in
this journal in the hope that it may thereby reach a wider
audience than would otherwise be possible. An outline of
some of its results is given in Wolfram (1982a).

Investigations of simple “self-organization” phenomena
in physical and chemical systems (Turing, 1952; Haken,
1975, 1978, 1979, 1981; Nicolis and Prigogine, 1977; Lan-

Reviews of Modern Physics, Vol. 55, No. 3, July 1983

tions also imply that weakly dissipative systems (such as
fluids with small temperature gradients imposed) should
tend to the unique condition of minimum entropy produc-
tion. However, in strongly dissipative systems, several fi-
nal states may be possible, corresponding to the various
solutions of the polynomial equations obtained from the
large time limit of the Boltzmann equations. Details or
“fluctuations” in the initial state determine which of
several possible final states are attained, just as in a sys-
tem with multiple coexisting phases. Continuous changes
in parameters such as external concentrations or tempera-
ture gradients may lead to discontinuous changes in the
final states when the number of real roots in the polyno-
mial equations changes, as described by catastrophe
theory (Thom, 1975). In this way, “structures” with
discrete boundaries may be formed from continuous
models. However, such approaches become impractical
for systems with very many degrees of freedom, and
therefore cannot address the formation of genuinely com-
plex structures.

More general investigations of self-organization and
“chaos” in dynamical systems have typically used simple
mathematical models. One approach (e.g., Ott, 1981)
considers dissipative nonlinear differential equations (typ-
ically derived as idealizations of Navier-Stokes hydro-
dynamic equations). The time evolution given particular
initial conditions is represented by a trajectory in the
space of variables described by the differential equations.
In the simplest cases (such as those typical for chemical
concentrations described by the Boltzmann transport
equations), all trajectories tend at large times to a small
number of isolated limit points, or approach simple
periodic limit cycle orbits. In other cases, the trajectories

Copyright © 1983 The American Physical Society 601
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Cellular auto-

mata are sufficiently simple to allow detailed mathemati-

cal analysis, yet sufficiently complex to exhibit a wide
variety of complicated phenomena. Cellular automata are ...

also of sufficient generality to provide simple models for
a very wide variety of physical, chemical, biological, and
other systems. The ultimate goal is to abstract from a
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analogous to the laws of thermodynamics. This paper
concentrates on the mathematical features of the simplest
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Wolfram:  Statslical mechanics of colbdar automats L]

Cellular auto-
mata are sufficiently simple to allow detailed mathemati-
cal analysis, yet sufficiently complex to exhibit a wide = =~ -,
variety of complicated phenomena. Cellular automata are ... ... ..
also of sufficient generality to provide simple models for !

IThe generation of self-similar patterns was thus found to
Ibe a generic feature of complex cellular automata evolv-
{ing from simple initial states. This result may provide
some explanation for the widespread occurrence of self- |
similarity in natural systems.
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II. The Topology of Real Networks: Empirical Results

Réka Albert™ and Albert-LaszIé Barabasi

Statistical mechanics of complex networks

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
Touters and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics,
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s

tobusiness against failures and attacks.
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Statistical Mechanics of Networks

* Areal review
article, covering
seminal
developments:

— Small world
networks

— Scale free networks

* But timely and
prescient in the
scope, implications
and future
significance of the
subject matter

F. Conclusions

The shift that we have experienced in the past three
years in our understanding of networks was swift and
unexpected. We have learned through empirical studies,
models, and analytic approaches that real networks are
far from being random, but display generic organizing
principles shared by rather different systems. These ad-
vances have created a prolific branch of statistical me-
chanics, followed with equal interest by sociologists, bi-
ologists, and computer scientists. Our goal here was to
summarize, in a coherent fashion, what is known so far.
Yet we believe that these results are only the tip of the
iceberg. We have uncovered some generic topological
and dynamical principles, but the answers to the open
questions could hide new concepts and ideas that might
turn out to be just as exciting as those we have encoun-
tered so far. The future could bring new tools as well, as
the recent importation of ideas from field theory (Burda
et al., 2001) and quantum statistics (Bianconi, 2000a,
2001; Bianconi and Barabasi, 2001b; Zizzi, 2001) indi-
cates. Consequently this article is intended to be as
much a review as a catalyst for further advances. We
hope that the latter aspect will dominate.



How to write a Preview of Modern Physics

* Previews of Modern Physics define a future field
of science
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— Don’t be afraid to give away your best ideas in this
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because they open doors, not close them

— They are the first word on a subject, not the last

* Previews of Modern Physics can be wrong, but
they fail spectacularly

— By addressing risky problems, they maximise the
chance for discoveries that are deep and subtle
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